IERG6130 Final Project Report:
Policy Learning for Task-oriented Dialogue Systems

Jingyan Zhou, Jinchao Li
SEEM, The Chinese University of Hong Kong
Shatin, Hong Kong
{jyzhou, jcli}@se.cuhk.edu.hk

Abstract

Dialog policy optimization is a crucial part for training task-oriented dialogue
systems via reinforcement learning. But the training requirement of interactions
with real users are costly, while the interactions with user simulators introduces
design bias and lacks language complexity. In this paper, we implemented a policy
learning method using Dyna-Q frameworkp_] , which integrates Q-learning with
World model, using both real and simulated interactions. The proposed method
learns in a more efficient way, and performs better than the baseline — Deep-Q
network.

1 Introduction

1.1 Problem and Motivation

Task-oriented dialogue systems (or Conversational Agents), which can assist users to complete
tasks, has been a hot topic for decades. There are several ways to build a task-oriented dialogue system
including rule-based, modular-based and end-to-end approaches, and in the research community,
the modular-based approach is receiving increasing attention. A typical modular-based system for
text-based conversational agents (shown in Figure [I)) contains four key parts: 1. Natural Language
Understanding (NLU) for extracting users’ intends and task-related information; 2. Dialogue State
Tracking (DST) that can track the current state of the dialogue; 3. Dialogue Policy (POL) making
decision on what action to take next. 4. Natural Language Generation (NLG) generating responses in
natural language to the users.

“I want to watch i_
itin Seattle” |
| (
: l gl
<«——L NLG [«— POL

|
“How many tickets |

; request (num_tickets)
do you need?" |

Figure 1: Components of a task-oriented dialogue system [1]]

To take appropriate dialog-acts and steer the conversation, the dialogue policies are crucial for
conversational agents. Recently, reinforcement learning(RL) has great breakthroughs in Atari games
and therefore is also being more and more popular in the field of dialog policy optimization as it can
learn policies via conversational interactions with users. In this project, we focus on RL-based dialog

'Our github repo: https://github.com/para-zhou/RL_DDQ

policy learning. The most ideal setting of RL-based dialog policy learning is to enable the agent to
learn directly from the interactions with real users. However, it is costly as the training may require a
large number of conversations. Alternatively, user simulators[2] which are usually built by expert
knowledge and heuristics or supervised learning (SL) [3] are employed to train the agent. But the
simulated user lacks language complexity comparing to the real user. And it may have biases due to
unbalanced training data.

To address above problems, an intuitive way is to use the real interactions two-fold: first is
to help the policy agent conduct direct reinforcement learning, and second is to update the user
simulator. This is the idea of Dyna-Q[4] which integrates planning into policy learning as shown in
Figure 2] In this work, we implemented a policy learning method using Dyna-Q framework. We
follow the work of Peng et al. in [5] to employ world model[l6] to be the user simulator to generate
simulated experience and rewards. To capture more information, the world model and Q-function are
implemented by multi-layer neural networks, i.e. the deep neural network is integrated to Dyna-Q as
Deep Dyna-Q(DDQ) [3].

We present our work in this report as follows: the detailed framework is fully illustrated in
Section [2| the experiments and performance evaluation is shown in Section |3| and our work is
discussed and concluded in Section [

value/policy
acting
planning direct
RL
model experience
model
learning

Figure 2: Relationships among planning, learning, and acting [7]].

1.2 Related Work

Dialogue policy can be optimized by either supervised learning or reinforcement learning
algorithms. Typically, a rule-based agent is employed to warm-start the system, then supervised
learning is conducted on the actions generated by the rules [1]]. One popular way is to treat this task
as a Partially Observed Markov Decision Process(POMDP) [8]]. Recently the reinforcement learning
which enables the agent to learn from the feedback of real users when interacting with them emerged
as a popular approach for dialogue systems, which seems outperformed the random, rule-based, and
supervised-based methods [9].

There are two ways to use reinforcement learning for dialogue policy optimization: online
learning and batch learning. The online approach requires the learner to interact with users to improve
its policy; the batch approach assumes a fixed set of transitions, and optimizes the policy based on the
data only, without interacting with users [[10]. The online setting often has batch learning as internal
step as we done in this work.

Considering the impractical cost of real user online learning, one popular approach is to employ
user simulators to generate user experience and train the agent[2]. However, the performance of
the simulators is limited by the way they are constructed (including expert knowledge, supervised
learning[[11], etc.). Building a reliable user simulator which can model the environment and generate
simulated experience is almost as complex as building a policy agent. Recently, there’s an increasing
trends of training the simulator and the agent simultaneously[3, 5] to improve the performance of the
simulator.

As for the direct reinforcement learning, neural network enhanced Q-learning is widely used
in RL-based dialog policy learning. The standard deep Q-network(DQN) [12] usually adopt e—

greedy to balance exploration and exploitation. To improve the efficiency of exploration, Lipton et al.
proposed Bayes-By-Backprop Q-Network(BBQN) [[11] to explore via Thompson Sampling. Another
technique which adopts imitation learning, to be specific, Replay Buffer Spikes(RBS) to pre-fill the
replay buffer via a rule-based agent is proven to be useful for improving the training efficiency [11]].

2 Methodology

2.1 Model Structure

For the policy agent, this workimplemented a Dyna-Q model with rule-based warm start. As
illustrated in Figure [3| the Dyna-Q model mainly consists of four parts: (1) RL update with real
experience} (2) Modgh learning from real experience, (3) World model search controﬂ to simulated
experience’} (4) Planning update with simulated experience.

SN

| Policy/value functions |

planning update

direct RL simulated
update experience
real
experience
search
learning control
Model

| Environment

Figure 3: The General Dyna Architecture [7]].

Therefore, the policy agent pipeline in our work can be mainly summarized in the following
processes:

. Warm start using rule-based agent

. Policy update with real experience

. World model learning with real experience

. World model search control to simulated experience
. Planning update with simulated experience

AN AW =

. Repeat 2-5 until convergence

2.2 DQN, World model and Planning

For simplicity, the policy agent and World model in our work are both implemented by Multi-
layer Perceptrons (MLPs), parameterized by 6 and 6, respectively.

The RL policy agent is implemented via Deep Q-network (DQN), which is designed to approxi-
mate the Q-function of the RL system, i.e. generates the Q-value of state s, donated as (s, a;6g). In
each step, the agent observes the dialogue state s, and chooses the next action using e-greedy policy,
i.e. choosing random action with probability € or otherwise choosing a = arg max,, Q(s,a’; 0g).
With the action a to state s, the agent then receives a reward TE], observes next user response a", as
well as the next state s’. The loss function of DQN is:

L(0) =E{r + maxQ'(s',a";0q) — Q(s,a;0q)}

Interactions with environment (real user).

3Such as World model, tabular model, etc..

4Selecting the starting states and actions for the simulated experiences generated by the model.
SInteractions with simulator.

%Tn direct RL process, we set reward of success: 80, failure: -40, each turn: -1.

where Q' () is the target Q-network.

Specifically, the input of DQN is an encoding of current dialogue state s. We use a feature vector
consisting of (a) dialogue-act and slot(s of last user/system action, (b) a bag of all appeared slotﬂ
(c) the current turn count, and (d) the results that subjects to the constraints for information slots.
Then the DQN outputs a real-value vector g, containing all possible or the best (dialogue-act, slot)
pairs that can be chosen by the system. Base on prior knowledge, some nonsense act-slot pairs will
be reduced, such as request (price).

The World model [13]] here takes the state s and action a as input, and outputs the simulated
user response a*, reward vﬂ and terminate information ¢, denoted as M (s, a;0y). Specifically,
M (s, a;0yr) is a multi-task model that combines two classification tasks for approximating o™ and ¢,
and one regression task for simulating 7.

In the planning process, the agent performs K steps planning in direct RL policy and interacts
with the World model, which is similar to dynamic programming. At the beginning of each step, we
randomly draw a user goal with constraints and requests, then the agent interacts and updates with
the simulated experience.

2.3 Algorithm

The detailed training procedure is shown in Algorithm [I]

Algorithm 1 DDQ for Dialogue Policy Learning
Require: N,e¢, K, L,C
Ensure: Q(s,a;0q), M(s,a;0n)
1: initialize Q(s, a;0¢q) and M (s, a; Oar) via pre-training on real experience
2: initialize Q' (s, a; 0g/) with 0 = Og
3: initialize real experience replay buffer R and simulated experience replay buffer S as empty
4: for n=1:N do
5. # Direct Reinforcement Learning
6: user starts with action a*, generate an initial state s
7.
8

while not ¢ do
with probability € select a random action a

9 o/w select a = arg max,, Q(s,a’; 0q)
10 observe user response a" and reward r, update next state s’
11 store (s,a,r,a*,s’) to R
12 s=3s"
13: end while
14: sample randomly from R, update 6o with R
15 # World Model Learning
16 sample randomly from R, update 6,
17 # Planning
18 for k=1:K do
19 t=FALSE, ! =0
20: sample a user action a", generate an initial state s
21: while nott Al < L do
22: with probability € select a random action a
23: o/w select a = arg max,,, Q(s,a’;0q)
24: world model responds with @, r and ¢, update s’
25: store (s,a,r,s') 0 S
26: l=1+1,s=5¢
27: end while
28: sample randomly from S, update 6
29: end for
30: every C steps reset O = 0g
31: end for

"There are some necessary predefined acts and slots in a specific domain. For example, in the movie-booking
task, dialog-acts can be suggest, inform, request, etc.; and slots can be movie_name, theater_name, time,
date, ticket_price, num_tickets, etc.

8For the replay buffer.

°In planning process, reward is generated by the World model.

3 Experiments and Results

3.1 Setup and Data

1.

Task: The task in our work is movie-ticket booking, which contains 11 acts and 16 slots
listed in Table [Tl below.

Acts Slots

greeting, request, inform, deny, city, closing, date, distanceconstraints,
confirm_question, confirm_answer, | greeting, moviename, numberofpeople,
not_sure, multiple_choice, price, starttime, state, ticket, theater, zip,
thanks, welcome, closing theater_chain, taskcomplete, video_format

Table 1: Acts and slots in movie-ticket booking task domain.

. Dataset: The seed data used here is from MiuLa where the raw conversational data

comes from Amazon Mechanical Turk. Every utterance in the corpora is labelled with
dialog action and slots which indicate the dialog state.

. Training: Referring to BBQ-Net [11], the rule-based agent, NLU, DST, NLG modules are

adopted from other works [[14H17]]. And then we use the proposed DDQ and baseline DQN
as POL module. At the beginning, we pre-filled a small number of successful experience
RBS by rule-based agent. Then we started the policy learning from random state, with same
epochs and update frequency N = 500, C' = 1, but different steps K. Considering that the
e-greedy policy tends to fail for the large action space, we set € = 0.3 first then changed it
to 0 after 100-th epoch.

. Evaluation Metrics: (1) Success rate, (2) Average turns. The average reward is directly

related with the success rate and average turns, so we didn’t demonstrate it for conciseness.

3.2 Experiments and Results

To demonstrate the efficiency of our model, we compare DDQ against e-greedy in a standard
Deep Q-Network. And to evaluate the performance of these models, we report the results on success
rate and average turns, as shown in Figure 4]

Success rate

DQN
DDQ(10)
— DDQQO)

Average turns

Epoch Epoch

(a) Success Rate (b) Average Turns

Figure 4: The performance of DDQ(K) and DQN.

As illustrated in Figure [} the success rate rises faster for DDQ at the beginning, and turns higher
and smoother until convergence than the DQN; for the average turns, the DDQ agents use fewer turns
until convergence. Moreover, under the premise of correct world model, the agents with suitably
larger steps of planning perform better than the ones with small planning steps. All in all, these
results depict that DDQ agents consistently outperform the DQN agent in success, effectiveness and
robustness.

"https://github.com/MiuLab/TC-Bot/tree/master/src/deep_dialog/data

https://github.com/MiuLab/TC-Bot/tree/master/src/deep_dialog/data

Table[2]shows two successful and failed conversational samples between trained DDQ agents and
users. The task failed when the agent not satisfied the user’s goals. For the successful conversation,
we can find that the agent completes the task soon after it has collected the sufficient information.

Successful Failed
0 usr: Can | buy tickets for hail caesar at seattle? | 0 usr: What start time can | book 4 tickets for deadpool?
1 sys: Which theater would you like? 1 sys: 6:10pm is available.
2 usr: | want to watch at regal meridian 16. 2 usr: | want to set it up tomorrow.
3 sys: 8:45 pm is available. 3 sys: City is not available!
4 usr: | want to set it up tomorrow. 4 usr: | want to watch at philadelphia.
5 sys: Yes, please. 5 sys: Starttime is not available!
6 usr: | want 2 tickets please! 6 usr: Which theater is available?

7 sys: Okay - | was able to book 2 tickets for you 7 sys: Oh sorry, there is no ticket available.
to see hail caesar at regal meridian 16 e
in seattle at 8:45 pm tomorrow. 37 sys: State is not available!

8 usr: Thank you! 38 usr: Thank you!
9 sys: Thank you! 39 sys: Thank you!

Table 2: Acts and slots in movie-ticket booking task domain.

4 Discussion and Conclusion

In this work, we implemented a Deep Dyna-Q model for policy learning in task-oriented dialogue
systems. The DDQ model effectively makes use of the real and simulated experience by learning
and planning. The experimental results show that the DDQ agents consistently outperform the DQN
agent (which doesn’t contain planning) in success, effectiveness and robustness.

The agents with suitably larger steps of planning perform better than the ones with small planning
steps. But it not means the larger K the better, because the max turns is limited, and the performance
is dependent on the quality of World model and simulated experience.

There are some challenging but interesting future works for improving the dialogue policy
learning. One is the effective exploration method, because e-greedy policy tends to fail in the large
action spaces. The trade-off between exploration and exploitation deserves more research effort.
Another one is the domain extension problem for task-orient agents, which means extending the agent
in one specific domain to other domains.

References

[1] D. Jurafsky. Speech & language processing. Pearson Education India, 2000.

[2] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young. A survey of statistical user simulation
techniques for reinforcement-learning of dialogue management strategies. The knowledge
engineering review, 21(2):97-126, 2006.

[3] B. Liu and I. Lane. Iterative policy learning in end-to-end trainable task-oriented neural dialog
models. CoRR, abs/1709.06136, 2017.

[4] R.S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990, pages 216-224. Elsevier, 1990.

[5] B. Peng, X. Li, J. Gao, et al. Deep dyna-q: Integrating planning for task-completion dialogue
policy learning. arXiv preprint arXiv:1801.06176, 2018.

[6] D. Ha and J. Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

[7] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[8] S. Young, M. Gasi¢, B. Thomson, et al. Pomdp-based statistical spoken dialog systems: A
review. Proceedings of the IEEE, 101(5):1160-1179, 2013.

[9] H. Chen, X. Liu, D. Yin, et al. A survey on dialogue systems: Recent advances and new
frontiers. Acm Sigkdd Explorations Newsletter, 19(2):25-35, 2017.

[10] J. Gao, M. Galley, L. Li, et al. Neural approaches to conversational ai. Foundations and Trends®
in Information Retrieval, 13(2-3):127-298, 2019.

[11] Z. Lipton, X. Li, J. Gao, et al. Bbg-networks: Efficient exploration in deep reinforcement
learning for task-oriented dialogue systems. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, 2015.

[13] X. Liu, J. Gao, X. He, et al. Representation learning using multi-task deep neural networks for
semantic classification and information retrieval. In Association for Computational Linguistics,
2015.

[14] X.Li, Z. C. Lipton, B. Dhingra, et al. A user simulator for task-completion dialogues, 2016.

[15] D. Hakkani-Tiir, G. Tiir, A. Celikyilmaz, et al. Multi-domain joint semantic frame parsing using
bi-directional rnn-1stm. In Interspeech, pages 715-719, 2016.

[16] N. Mrksi¢, D. O. Séaghdha, T.-H. Wen, et al. Neural belief tracker: Data-driven dialogue state
tracking. arXiv preprint arXiv:1606.03777, 2016.

[17] T.-H. Wen, M. Gasic, N. Mrksic, et al. Semantically conditioned Istm-based natural language
generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

	Introduction
	Problem and Motivation
	Related Work

	Methodology
	Model Structure
	DQN, World model and Planning
	Algorithm

	Experiments and Results
	Setup and Data
	Experiments and Results

	Discussion and Conclusion

