Alzheimer’s Disease Detection using Pretrained
Acoustic Representations: A Comparison Study

Jinchao Li, Xixin Wu, Xunying Liu, and Helen Meng

The Chinese University of Hong Kong, Hong Kong SAR, China
{jcli,wuxx,xyliu,hmmeng}@se.cuhk.edu.hk

Abstract. Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that causes cognitive and physical impairment. Effective AD de-
tection assists immensely in timely intervention and progression deceler-
ation. Recently research on AD detection has made progress using pre-
trained acoustic representations. However, there is a lack of comparison
of different representations. This paper conducts a comparison study on
AD detection using several latest well-performed pretrained represen-
tations. We also investigate the performance variation by using differ-
ent intermediate layers of the pretrained models. This study confirms
the effectiveness of the pretrained representations for the AD detection
task, and also has two interesting observations in the experiments: (i)
higher layers of the pretrained model are more suitable for AD detec-
tion, and (ii) using one single layer outperforms a weighted sum of all
layers. These observations appeal to further investigation into pretrained
models specifically trained for AD detection.

Keywords: Alzheimer’s Disease Detection - Acoustic Features - Self-
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1 Introduction

Alzheimer’s disease (AD), characterized by a clear decline of cognitive func-
tioning, including memory, language, thinking and behavior, is a major kind
of neurocognitive disease (also called dementia) [1]. AD can intrigue irreversible
deterioration of cognitive functioning, which doesn’t have effective therapy nowa-
days. As estimated in 2019, AD affects over 50 million people globally [2]. Hence,
the effective and early detection of AD is essential for timely intervention and
decelerating disease progression.

Speech and language impairments are considered one of the most character-
istic symptoms of AD at a very early stage, such as temporal disfluency, word
finding and word retrieval difficulties |[3H6]. This lays the theoretical foundation
for using this acoustic and linguistic information to more robustly and more
holistically detect and understand the Alzheimer’s Disease, and it is attracting
increasing research attention. Compared to conventional diagnosis methods, e.g.,
Magnetic Resonance Imaging and Fluid Analysis |7], spoken language-based di-
agnosis methods are cheaper, more convenient, and have a high potential for
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large-scale screening. Research efforts have been devoted to investigating AD
detection using speech (the acoustic signal) and language (words and sentences)
features as biomarkers |[4-6]. Since obtaining the text from speech requires ei-
ther costly human annotation or an automatic speech recognition (ASR) sys-
tem, which may yield recognition errors that affect the final detection results,
high-accuracy detection purely based on acoustic features is desired. Previous
research has explored the utilization of conventional acoustic features, such as
ComParE [§], eGeMAPS [9] and disfluency measures |[10H12].

Recently, pretrained representations for speech have achieved significant suc-
cesses in various spoken language processing areas |13}/14]. One representative
approach is self-supervised learning (SSL). The idea behind SSL is to learn a rep-
resentation of input text or speech data based on a self-supervised framework,
e.g., predicting masked input tokens, using a large amount of data. The pre-
trained SSL models can then be transferred to downstream tasks, e.g., ASR |14],
speaker verification [15], to boost the performance as the application of learnt
representation implicitly augments the data for the downstream tasks. Another
pioneering work by Radford et al. used a weakly-supervised approach to learn the
prediction of audio transcripts based on a large amount of multilingual and mul-
titask data (680,000 hours) on the internet [16]. This weakly-supervised frame-
work also provides another option for extracting pretrained representations from
speech.

The pretrained representations have also been successfully applied to audio-
based AD detection [17H19]. For example, Koo et al. [17] used the averaged
VGGish [20] features, which is trained for audio classification, and achieved
better performance than traditional acoustic features. Balagopalan et al. [18|
combined the conventional MFCC features with the pre-trained Wav2Vec 2.0.
Syed et al. [19] used an ensemble method by fusing the embeddings of OpenL3-
Music and Environment variants [21].

Though in the previous research [18}/20], self-supervised learned acoustic rep-
resentations (e.g., VGGish and Wav2Vec 2.0) demonstrate superior performance
than conventional acoustic features (e.g., the ComParE feature sets [10]), there is
a lack of performance comparison of the various pretrained models in AD detec-
tion. Also, which layer(s) of the pretrained models is(are) more suitable for AD
detection is unclear, though previous research suggests that higher layers contain
more word and semantic information 22|, which may be beneficial to the AD de-
tection task [17-19]. In this paper, we try to investigate the effects of pretrained
acoustic representations, including both SSL and weakly-supervised, by conduct-
ing a range of experiments using several advanced representations, including
Wav2vec 2.0 [14], HuBERT |[23|, WavLM [24] and Whisper [16]. Through the
experiments, we observe that the four SSL representations achieve comparable
and good results, compared to the baselines. We further investigate the contribu-
tion of different layers from the pretrained models and found that higher layers
generally provide better performance than lower layers, which coincides with
previous research findings. Another interesting observation is that AD detection
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systems with one single upper layer outperform the systems with a weighted sum
of all layers.

2 Methodology

We compare four SSL representations as introduced as follows. A neural model
is built upon these representations to predict the disease as two classes, i.e.,
Alzheimer’s disease (AD) and healthy control (HC).

2.1 Investigated Pretrained Models

Wav2vec 2.0. Baevski et al. proposed Wav2vec 2.0 to jointly learn contextu-
alized speech representations and an inventory of discretized speech units [14].
The speech inputs are masked in the latent space and the model is trained with
a contrastive loss defined over the discrete units. Compared to Wav2vec [25],
where the prediction is the next step of a speech signal, Wav2vec 2.0 achieves
significantly better performance with jointly learnt discretized speech units.
HuBERT. HuBERT introduces a prior lexicon based on offline clustering to
provide labels for speech units [23]. The model is trained to predict the cluster
assignments from the input speech units, which encourages the model to learn a
combined acoustic and language model. The training and the clustering can be
iterated to improve performance.

‘WavLM. In order to solve full-stack downstream speech tasks, WavLM jointly
learns masked speech prediction and denoising, by using some simulated noisy
or overlapped speech data [24]. The gated relative position bias is utilized to
better capture the sequence ordering of input speech. With these improvements,
WavLM is effective for not only the ASR task, but also speaker-related tasks,
e.g., speaker diarization [26].

Whisper. Radford et al. [16] proposed a robust ASR system, named Whisper,
trained in a weak supervision fashion, i.e., the multilingual and multitask train-
ing data contains noisy transcriptions. However, they vastly scaled the data to
680,000 hours. Whisper is competitive with other fully supervised ASR systems
on several common benchmarks and obtains stable performances in zero-shot
settings without any fine-tuning, demonstrating its strong robustness. We pro-
pose to use the intermediate layers of Whisper as pretrained representations for
AD detection and compare them to other SSL representations.

2.2 Alzheimer’s Disease Detection Model

As illustrated in Fig. [, we proposed a neural architecture to extract features
based on the pretrained representations and elaborately use them for the AD
detection task. All of the aforementioned pretrained models are generally com-
posed of a feature encoder, projector, and several stacked Transformer encoders
(TE). The embeddings from different TE layers usually contain different infor-
mation, i.e., lower layers encode local acoustic features, followed by phonetic,
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Fig. 1. Proposed model architecture.

word identity, and word meaning information [22,27]. To avoid information loss
due to only using the last layer of the pretrained TEs, we utilized all layers plus
the input layer using a weighted sum of these layers with trainable weights. The
weighted-summed embedding is then projected into a lower-dimension vector
and normalized to reduce redundancy while retaining the intra-class variability.
The projection and normalization is followed by an attentive time-axis pooling
layer |28| to compress the sequence with variant time lengths into a fixed-length
vector, and to focus on important time steps for the target tasks. Finally, we
used a simple linear layer with the softmax activation to predict the diagnosis
results of AD or HC.

3 Experiments

3.1 Dataset

We used the Alzheimer’s Dementia Recognition Through Spontaneous Speech
(ADReSS) Challenge 2020 dataset [10], which is a selected part of Pitt Corpus in
the DementiaBank database [29]. The dataset consists of 156 speech samples and
associated transcripts from non-AD (35 male, 43 female) and AD (35 male, 43
female) English-speaking participants for the Cookie Theft picture description
task, and is divided into a standard train (108 participants, about 2 hours)
and test (48 participants, about 1 hour) sets with balanced distributions of age,
gender and disease conditions.

3.2 Experimental Setup

In the experiments, we first enhanced the audios with the FullSubNet toolkit |30].
Then, we sliced each audio into 30-second segments with a hop ratio of 0.25, and
averaged the predicted detection probabilities for the same speaker. The models
are evaluated on the unseen ADReSS test data with the metrics of classification
accuracy and F1 (macro) scores.

The variants of Wav2vec 2.0, Hubert, and WavLM used in this work are the
“large” ones, which output 1024-dimensional embeddings. We used the Whis-
per variant of “small.en”, which outputs 768-dimensional embeddings. Upon the
extracted pretrained representations, we used two stacked 8-dimensional linear
layers with layer normalization each as the projector and a fully-connected linear
layer as the classifier. We inserted dropout layers with a rate of 0.25 before the
projector and the classifier, respectively, for regularization. We explored two ways
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of aggregating information from the layers of pretrained models, i.e., “weighted
sum (WS)” and “maximum single (MS)”. WS obtains a weighted sum of all the
pretrained layers, and MS selects one single layer with the best performance. We
also compared the attentive temporal pooling with mean values across time steps
(denoted as “Mean” in Table . Moreover, we compared our proposed models
with previous literature on the same ADReSS dataset, including models based
on conventional acoustic features [10], VGGish embeddings [17] and fusion of
OpenL3 embeddings [19].

We adopted a cross-entropy loss as the training objective. The optimizer we
used is the AdamW [31] with a weight decay of le — 5. In the training process,
we froze the pretrained models and only trained the subsequent modules with a
learning rate of 1le — 4 and a batch size of 16 for 50 epochs.

Table 1. Comparison of AD detection performance based on acoustic features and
various representations. “AGG” denotes “aggregation”, “WS” denotes “weighted sum”,
and “MS” denotes “maximum single”.

Feature Layer AGG Time AGG Accuracy(%) Fl-score(%)

ComParE [10] N/A Mean 62 62
VGGish [17] Top Mean 72.92 72.62
OpenL3 [19] Top Mean 81.25 81.20
Wav2vec 2.0 WS Mean 77.50 76.69
HuBERT WS Mean 78.88 78.79
WavLM WS Mean 79.74 79.66
Whisper WS Mean 79.31 79.30
WavLM WS Attention 82.33 82.33
Whisper WS Attention 81.47 81.46
WavLM MS Attention 85.78 85.78
Whisper MS Attention 88.79 88.79

3.3 Experimental Results

We compared acoustic representations from various pretrained models, including
SSL models of Wav2vec 2.0, HUBERT, WavLM and the latest weakly-supervised
model Whisper, as shown in Table [I] The performances are benchmarked with
the baseline systems. It can be found that the systems that use weighted sum and
mean pooling based on pretrained acoustic representations achieve much better
performances than the baseline system with the ComParE features [10]. The
four pretrained representations obtain comparable performance, with WavLM
and Whisper achieving slightly better performances. Compared with the mean
pooling strategy, the Attentive Pooling boosts the performances of systems based
on WavLM and Whisper by a significant margin. These experimental results
confirm the effectiveness of pretrained representations for the AD detection task.
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Fig. 2. Effectiveness of various layers of pretrained models, (a) WavLM and (b) Whis-
per. The blue line shows the performance of the systems using only one single layer
of the pretrained models. The green bars represent the attention weights assigned to
each pretrained layer in the systems using all pretrained layers. The red dashed line
denotes the performances of the systems using a weighted sum of all pretrained layers.

We chose WavLM and Whisper, as representatives for the two frameworks
of SSL and weakly-supervised, to further investigate the effectiveness of each
layer of the pretrained models. We built systems using only one single layer
from the pretrained models. The performances are shown as the blue lines in
Fig.[2] The systems using a weighted sum of all layers are presented as a dashed
red line, and the weights are shown as green bars. It can be observed that, (i)
systems using higher single layers generally achieve better performances than
those using lower layers; (ii) some systems using one single upper layer can
outperform the system using a weighted sum of all layers; and (iii) the weight
distributions do not match the performances of systems using one single layer.
The first observation coincides with previous research that higher layers capture
more word and semantic information [22], which are crucial for AD detection.
This also supports the way of using the topmost layer for AD detection that is
widely adopted in previous research |17H19]. Observations (ii) and (iii) together
lead to an inference that due to data sparsity of the AD detection task, the
attention weights are not sufficiently trained, therefore the systems using all
layers are inferior to some well-performing systems using one single upper layer.

4 Conclusion

Alzheimer’s disease detection is attracting increasing attention, and many efforts
have been devoted to making use of pretrained acoustic representations for better
detection results. However, there is a lack of comparison of various pretrained
representations. Also, which layer(s) of pretrained models is(are) more suitable
for AD detection is unclear. In this work, we conducted a comparison study on
the latest advanced pretrained representations, including Wav2vec 2.0, HuBERT,
WavLM and Whisper, for AD detection. Through the experiments, we found that
the four examined representations provide comparable results, with WavLM and



Alzheimer’s Disease Detection using Pretrained Acoustic Represent. 7

Whisper obtaining slightly better results. We also found that higher layers of
the pretrained models are more suitable for AD detection. In the future, we will
investigate models specifically pretrained for AD detection.
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