Python Basics
Lists
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
arr = [1, 2, 3]
# Common Operations
arr.index(1) # Find index
arr.append(1) # Add to end
arr.insert(0,10) # Add 10 from left (at index 0 which is start)
arr.remove(3) # Remove value
arr.pop() # Remove & return last element
arr.sort() # In-place sort (TimSort: O(n log n))
arr.sort(reverse=True) # In-place reverse (High to low)
arr.reverse() # In-place reverse
arr.copy() # Return shallow copy
# List Slicing
arr[start:stop:step] # Generic slice syntax
arr[-1] # Last item
arr[::-1] # Reverse list
arr[1:] # Everything after index 1
arr[:3] # First three elements
# Sublists (aka slicing), 左闭右开
arr[1:2] # [2]
# Similar to for-loop ranges, last index is non-inclusive
# But no out of bounds error
arr[0:10] # [1, 2, 3]
# Custom sort (e.g., by length of string)
arr = ["bob", "alice", "jane", "doe"]
arr.sort(key=lambda x: len(x))
print(arr) # ['bob', 'doe', 'jane', 'alice']
# 2-D lists
arr = [[0] * 4 for i in range(4)]
print(arr)
print(arr[0][0], arr[3][3])
# This won't work
# arr = [[0] * 4] * 4
python里面的区间基本上是左闭右开,比如range、slicing
Tuples
1
2
3
4
5
6
7
8
9
10
# Tuples are immutable lists
t = (1, 2, 3, 1)
# Essential Operations
t.count(1) # Count occurrences of value
t.index(2) # Find first index of value
# Useful Patterns
x, y = (1, 2) # Tuple unpacking
coords = [(1,2), (3,4)] # Tuple in collections
Sets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
s = {1,2,3}
# Common Operations
s.add(4) # Add element
s.remove(4) # Remove (raises error if missing)
s.discard(4) # Remove (no error if missing)
s.pop() # Remove and return arbitrary element
# Set Operations
a.union(b) # Elements in a OR b
a.intersection(b) # Elements in a AND b
a.difference(b) # Elements in a but NOT in b
a.symmetric_difference(b) # Elements in a OR b but NOT both
a.issubset(b) # True if all elements of a are in b
a.issuperset(b) # True if all elements of b are in a
Strings
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
s = "hello world"
# Essential Methods
s.split() # Split on whitespace
s.split(',') # Split on comma
s.strip() # Remove leading/trailing whitespace
s.lower() # Convert to lowercase
s.upper() # Convert to uppercase
s.isalnum() # Check if alphanumeric
s.isalpha() # Check if alphabetic
s.isdigit() # Check if all digits
s.find('sub') # Index of substring (-1 if not found)
s.count('sub') # Count occurrences
s.replace('old', 'new') # Replace all occurrences
# ASCII Conversion
ord('a') # Char to ASCII (97)
chr(97) # ASCII to char ('a')
# Valid numeric strings can be converted
print(int("123") + int("123")) # 246
# And numbers can be converted to strings
print(str(123) + str(123)) # 123123
Queues
1
2
3
4
5
6
7
8
9
10
11
12
# Queues (double ended queue)
from collections import deque
# Perfect for BFS - O(1) operations on both ends
d = deque()
d.append(1) # Add right
d.appendleft(2) # Add left
d.pop() # Remove right
d.popleft() # Remove left
d.extend([1,2,3]) # Extend right
d.extendleft([1,2,3])# Extend left
d.rotate(n) # Rotate n steps right (negative for left)
Heaps
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import heapq
# MinHeap Operations - All O(log n) except heapify
nums = [3,1,4,1,5]
heapq.heapify(nums) # Convert to heap in-place: O(n)
heapq.heappush(nums, 2) # Add element: O(log n)
smallest = heapq.heappop(nums) # Remove smallest: O(log n)
# MaxHeap Trick: Multiply by -1
nums = [-x for x in nums] # Convert to maxheap: O(n)
heapq.heapify(nums) # O(n)
largest = -heapq.heappop(nums) # Get largest: O(log n)
# Advanced Operations
k_largest = heapq.nlargest(k, nums) # O(n * log k)
k_smallest = heapq.nsmallest(k, nums) # O(n * log k)
# Custom Priority Queue
heap = []
heapq.heappush(heap, (priority, item)) # Sort by priority
# Under the hood are arrays
minHeap = []
heapq.heappush(minHeap, 3)
heapq.heappush(minHeap, 2)
heapq.heappush(minHeap, 4)
# Min is always at index 0
print(minHeap[0]) # 2
while len(minHeap):
print(heapq.heappop(minHeap))
# 2
# 3
# 4
# No max heaps by default, work around is
# to use min heap and multiply by -1 when push & pop.
maxHeap = []
heapq.heappush(maxHeap, -3)
heapq.heappush(maxHeap, -2)
heapq.heappush(maxHeap, -4)
# Max is always at index 0
print(-1 * maxHeap[0]) # 4
while len(maxHeap):
print(-1 * heapq.heappop(maxHeap))
# 4
# 3
# 2
# Build heap from initial values
arr = [2, 1, 8, 4, 5]
heapq.heapify(arr)
while arr:
print(heapq.heappop(arr))
# 1
# 2
# 4
# 5
# 8
Built-in Functions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Iteration Helpers
enumerate(lst) # Index + value pairs
zip(lst1, lst2) # Parallel iteration
map(fn, lst) # Apply function to all elements
filter(fn, lst) # Keep elements where fn returns True
any(lst) # True if any element is True
all(lst) # True if all elements are True
# Binary Search
import bisect
bisect.bisect(lst, x) # Find insertion point
bisect.bisect_left(lst, x)# Find leftmost insertion point
bisect.insort(lst, x) # Insert maintaining sort
# Type Conversion
int('42') # String to int
str(42) # Int to string
list('abc') # String to list
''.join(['a','b']) # List to string
set([1,2,2]) # List to set
# Math
abs(-5) # Absolute value
pow(2, 3) # Power
round(3.14159, 2) # Round to decimals
divmod(10, 3) # (3, 1) - returns (quotient, remainder)
# Binary representation
bin(10) # '0b1010'
format(10, 'b') # '1010' (without prefix)
Math
在正数时,int(a / b) 和 a // b 通常结果相同,但在负数时可能不同:
int(a / b)是向零取整(trunc)。如果你希望总是向零取整,使用int(a / b)。//是向下取整(floor)。如果你希望总是向下取整,使用a // b。
另外,取模运算 a % b也遵从 floor法则,a = (a // b) * b + (a % b) -> a % b = a - (a // b) * b。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# 向零取整
print(int(3 / 2)) # 1
print(int(-3 / 2)) # -1
# 向下取整
print(int(3 // 2)) # 1
print(int(-3 // 2)) # -2
# floor(-1.5) = -2
# 取模
print(10 % 3) # 1
print(-10 % 3) # 2
# -10 - (-10//3) * 3 = -10 - (-4) * 3 = 2
import math
# Constants
math.pi # 3.141592653589793
math.e # 2.718281828459045
# Common Functions
math.ceil(2.3) # 3 - Smallest integer greater than x
math.floor(2.3) # 2 - Largest integer less than x
math.gcd(a, b) # Greatest common divisor
math.log(x, base) # Logarithm with specified base
math.sqrt(x) # Square root
math.pow(x, y) # x^y (prefer x ** y for integers)
# Trigonometry
math.degrees(rad) # Convert radians to degrees
math.radians(deg) # Convert degrees to radians
References
This post is licensed under
CC BY 4.0
by the author.